Discriminating Input Variables for Fraud Detection using Radial Basis Function Network
نویسندگان
چکیده
Fraud is an adaptive crime; special methods of data gathering and analysis are required to combat fraud issues as criminals often quest for dubious techniques to evade detection. Radial basis function (RBF) network, was used to build base models that identifies and detect the risk of fraud in transactions. At first, it is imperative to isolate the basic factors that are predictive of fraud occurrences so as to determine the Information gain of each attribute. The input variables’ importance was ascertained to indicate how some of the input variables were distinguished as strong indicators or weak indicators of fraud. Hence, the relevant attributes were selected prior to examining the model’s performance. This study has found relevance among corporate business professionals and government agencies, to minimizing the time and cost of fraud detection. The researcher recommended that fraud mining processes be regularly updated at fixed time intervals to checkmate criminals.
منابع مشابه
Financial Fraud Detection using Radial Basis Network
The ubiquitous cases of abnormal transactions with intent to defraud is a global phenomenon. An architecture that enhances fraud detection using a radial basis function network was designed using a supervised data mining technique― radial basis function (RBF) network, interpolation approximation method. Several base models were thus created, and in turn used in aggregation to select the optimum...
متن کاملKnowledge Discovering in Corporate Securities Fraud by Using Grammar Based Genetic Programming
Securities fraud is a common worldwide problem, resulting in serious negative consequences to securities market each year. Securities Regulatory Commission from various countries has also attached great importance to the detection and prevention of securities fraud activities. Securities fraud is also increasing due to the rapid expansion of securities market in China. In accomplishing the task...
متن کاملImpact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...
متن کاملRadial Basis Neural Network Based Islanding Detection in Distributed Generation
This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...
متن کاملDeveloping a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production
The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...
متن کامل